PREGLED AKTUELNIH VAKCINA ZA PROFILAKSU BAKTERIJSKIH INFEKCIJA

Autori

  • Dragana Božić Katedra za mikrobiologiju i imunologiju, Univerzitet u Beogradu-Farmaceutski fakultet https://orcid.org/0000-0002-5373-5540
  • Biljana Bufan Univerzitet u Beogradu-Farmaceutski fakultet

DOI:

https://doi.org/10.46793/PP240214004B

Ključne reči:

antibakterijske vakcine, tipovi vakcina, BCG, DTP, HIB, pneumokokna vakcina

Apstrakt

Antibakterijske vakcine igraju glavnu ulogu u savremenoj medicini obezbeđujući efikasan pristup u borbi protiv zaraznih bolesti izazvanih bakterijama. Važnost ovih vakcina leži u njihovoj sposobnosti da stimulišu imunski sistem da prepozna i neutrališe bakterijske patogene, ili egzotoksine koje oni proizvode, čime sprečavaju ili ublažavaju ozbiljnost bakterijskih infekcija. Razvoj i široka upotreba antibakterijskih vakcina značajno su doprineli smanjenju globalnog tereta bolesti kao što su pneumonija, meningitis i sepsa.

Danas je globalni porast bolesti koje se mogu sprečiti vakcinama zabrinjavajući trend koji je usko povezan sa pojavom i zagovaranjem politike protiv vakcinacije. Prema poslednjem izveštaju Svetske zdravstvene organizacije, pokrivenost vakcinacijom u Srbiji je opala tokom protekle decenije, što je ugrozilo kolektivni imunitet i dovelo do nedavnih izbijanja bolesti koje se mogu sprečiti vakcinom, poput velikog kašlja i malih boginja. Razumevanje značaja antibakterijskih vakcina naglašava njihov značaj u promovisanju imuniteta pojedinca i zajednice, što na kraju dovodi do zdravije populacije i prevencije rezistencije na antibiotike.

Ovaj rad sumira glavne karakteristike različitih tipova antibakterijskih vakcina, kao što su celo ćelijske vakcine, podjedinične vakcine i toksoidne vakcine, i daje pregled tipova bakterijskih antigena sadržanih u vakcinama dostupnim za obaveznu imunizaciju (vakcine protiv tuberkuloze, difterije, tetanusa, pertusisa, Haemophilus influenzae i pneumoka) ili za neobaveznu imunizaciju (vakcina protiv meningokoka, tifusa i kolere).

Reference

Andre FE, Booy R, Bock HL, Clemens J, Datta SK, John TJ et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull World Health Organ. 2008;86:140-146

Carter A, Msemburi W, Sim SY, Gaythorpe KAM, Lambach P, Lindstrand A et al. Modeling the impact of vaccination for the immunization Agenda 2030: Deaths averted due to vaccination against 14 pathogens in 194 countries from 2021 to 2030. Vaccine. 2023;S0264-410X(23)00854-X. doi: 10.1016/j.vaccine.2023.07.033. Epub ahead of print. PMID: 37537094.

Rodrigues CMC, Plotkin SA. Impact of Vaccines; Health, Economic and Social Perspectives. Front Microbiol. 2020;11:1526. doi: 10.3389/fmicb.2020.01526. PMID: 32760367.

Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21:83–100. (2021). doi.org/10.1038/s41577-020-00479-7

RTS,S Clinical Trials Partnership, Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BG et al. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med. 2012;367(24):2284-95. doi: 10.1056/NEJMoa1208394. PMID: 23136909.

World Health Organization. Smallpox vaccine. https://www.who.int/news-room/feature-stories/detail/smallpox-vaccines Date accessed: February 8, 2024.

Khan YH, Saifullah A, Mallhi TH. Bacterial Vaccines. Encyclopedia of Infection and Immunity 2022: 530-544. ISBN 9780323903035. doi: 10.1016/B978-0-12-818731-9.00170-1.

Montero DA, Vidal RM, Velasco J, Carreño LJ, Torres JP, Benachi O MA et al. Two centuries of vaccination: historical and conceptual approach and future perspectives. Front Public Health. 2024;11:1326154. doi: 10.3389/fpubh.2023.1326154. PMID: 38264254.

Minor PD. Live attenuated vaccines: Historical successes and current challenges. Virology. 2015;479-480:379-92. doi: 10.1016/j.virol.2015.03.032. PMID: 25864107.

Sakurai F, Tachibana M, Mizuguchi H. Adenovirus vector-based vaccine for infectious diseases. Drug Metab Pharmacokinet. 2022;42:100432. doi: 10.1016/j.dmpk.2021.100432

Immunization. World Health Organization, Geneva 2021 https://data.unicef.org/topic/child-health/immunization/; WHO/UNICEF Estimates of National Immunization Coverage (WUENIC) -Interactive WHO and UNICEF coverage estimates country profiles (https://worldhealthorg.shinyapps.io/wuenic-trends-2023/); WHO Immunization Data Portal (https://immunizationdata.who.int/listing.html?topic=coverage&location=SRB); Immunization Country Profiles - UNICEF DATA (https://data.unicef.org/resources/immunization-country-profiles/) Date accessed: February 8, 2024.

Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021;19:287–302.

Frost I, Sati H, Garcia-Vello P, Hasso-Agopsowicz M, Lienhardt C, Gigante V et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe. 2023;4(2):e113-e125. doi: 10.1016/S2666-5247(22)00303-2. PMID: 36528040.

Lobo N, Brooks NA, Zlotta AR, Cirillo JD, Boorjian S, Black PC et al. 100 years of Bacillus Calmette–Guérin immunotherapy: from cattle to COVID-19, Nature Rev Urol. 2021;18:611-622.

World Health Organization. BCG vaccine: WHO position paper, February 2018 - Recommendations. Vaccine. 2018;36(24):3408-3410. doi: 10.1016/j.vaccine.2018.03.009. PMID: 29609965.

Enriquez AB, Izzo A, Miller SM, Stewart EL, Mahon RN, Frank DJ et al. Advancing Adjuvants for Mycobacterium tuberculosis Therapeutics. Front Immunol 2021;12:740117. doi: 10.3389/fimmu.2021.740117

Agencija za lekove i medicinska sredstva Srbije https://www.alims.gov.rs/humani-lekovi/pretrazivanje-humanih-lekova/ Date accessed: January 10 – January 30, 2024.

Heo JY, Seo YB, Choi WS, Kim EJ, Jeong HW, Lee J et al. Effectiveness of Pneumococcal Vaccination Against Pneumococcal Pneumonia Hospitalization in Older Adults: A Prospective, Test-Negative Study. J Infect Dis. 2022;225(5):836-845. doi: 10.1093/infdis/jiab474. PMID: 34537847. https://pubmed.ncbi.nlm.nih.gov/34537847/

Dunne EM, Cilloniz C, von Mollendorf C, Lewnard J, Grant LR, Slack MPE et al. Pneumococcal Vaccination in Adults: What Can We Learn From Observational Studies That Evaluated PCV13 and PPV23 Effectiveness in the Same Population? Arch Bronconeumol. 2023;59(3):157-164. doi: 10.1016/j.arbres.2022.12.015. PMID: 36681604.

Summary of WHO position paper on pneumococcal conjugate vaccines in infants and children under 5 years of age, February 2019. https://cdn.who.int/media/docs/default-source/immunization/position_paper_documents/pneumococcus/who-pp-pcv-2019-summary.pdf?sfvrsn=3e4fdf81_2 Date: 2019 Date accessed: February 6, 2024

McMillan M, Chandrakumar A, Wang HLR, Clarke M, Sullivan TR, Andrews RM et al. Effectiveness of Meningococcal Vaccines at Reducing Invasive Meningococcal Disease and Pharyngeal Neisseria meningitidis Carriage: A Systematic Review and Meta-analysis, Clin Infect Dis. 2021;73(3): e609–e619. doi: 10.1093/cid/ciaa1733. PMID: 33212510.

Ladhani SN, Campbell H, Andrews N., Parikh SR, White J, Edelstein M et al. First real world evidence of meningococcal group B vaccine, 4CMenB, protection against meningococcal group W disease; prospective enhanced national surveillance, England. Clin Infect Dis. 2021; 73(7):e1661-e1668. doi: 10.1093/cid/ciaa1244. PMID: 32845996.

World Health Organization. Typhoid vaccines: WHO position paper, March 2018 - Recommendations. Vaccine. 2019;37(2):214-216. doi: 10.1016/j.vaccine.2018.04.022. PMID: 29661581.

World Health Organization. Cholera vaccine: WHO position paper, August 2017 - Recommendations. Vaccine. 2018;36(24):3418-3420. doi: 10.1016/j.vaccine.2017.09.034. PMID: 29555219.

##submission.downloads##

Objavljeno

03/21/2024

Broj časopisa

Sekcija

Review Articles